[1] Within the past decade, music-theoretical analysis of popular music has become increasingly common. Nonetheless, until quite recently the purview of such research has been relatively limited, focusing mainly on classic and art rock from the 1960s and 70s. While these repertoires have provided fertile ground for analytical exploration, several more recent genres and styles raise interesting structural, semiotic, and aesthetic questions that also merit study.
[2] One of the most distinctive types of contemporary popular music is electronic dance music, a broad category that includes styles such as techno, house, drum-n-bass, and trance. Electronic dance music differs from both rock and art music in a number of ways, all of which suggest avenues for productive theoretical investigation. While many genres of popular music are distinguished from each other on the basis of "surface" differences such as instrumentation or lyrical content, electronic dance music presents a distinctive overall formal structure in addition to its characteristic instrumentation. It also differs from most other types of Western music in its rejection of harmony as a primary musical parameter. Its use of pitch is typically restricted, with the majority of musical development taking place instead in the realms of rhythm, meter, texture, and timbre. Consequently, these areas should be principal concerns for the analyst wishing to pursue a close examination of musical sound in this repertoire
[3] Rhythm provides an ideal starting point, as it seems to be the element to which listeners and fans of EDM relate most directly. This connection is most immediately apparent on the dance floor, where audiences physically enact the rhythms of the music. Written discussions of electronic dance music also tend to highlight its rhythmic qualities--references to its "unrelenting rhythm," "pulsing dance rhythms," and "irresistible tribal rhythm" are common--and fans often refer to the music simply as "beats" (as in, "let's go to the club and hear some beats"). Yet EDM poses a challenge to the analyst, for it differs in many ways from the repertoires that current music-theoretical models of rhythm and meter were developed to address. Transcription can give the impression that it is less complex rhythmically than these other bodies of music: although it typically consists of many different textural layers, each of which has a different rhythmic pattern, these patterns can appear quite simple when considered individually, and they repeat for long periods of time without changing. Nonetheless, the experience of listening to electronic dance music is neither simple nor monotonous, for it engages one's perception of rhythm and meter in a number of interesting ways. In this paper I will examine some of the issues involved in the analysis of rhythm and meter in this repertoire. In the first half of my paper, I will consider metrical dissonance and ambiguity within the context of a layered approach to musical meter. The discussion, which will be centered upon several short musical examples, will also highlight some of the distinctive ways in which these phenomena are manifested in EDM. The second half of my paper will focus on the use of asymmetrical patterns in EDM. Though this section will begin with two musical examples, it will develop into a more general discussion focusing on broader questions of rhythmic and metrical theory. Throughout the paper I will draw upon scholarly work in a number of different fields, including music theory, ethnomusicology, and cognitive science.
[4] Let us first consider a brief musical example, an excerpt from the song "Piku" by The Chemical Brothers. At the beginning of this example, two distinct textural layers, defined by timbre and by rhythmic patterns, are audible; they are not aligned, however (Example 1a). Accents are created by register in the synthesizer pattern and by attack-point spacing in the percussion part, thus suggesting two different streams of quarter-note pulses. This state of nonalignment continues for about thirty seconds. Although the balance between the two parts changes as the example unfolds, neither beat pattern stands out clearly as the dominant one. Thus one can easily shift attention from one pattern to another, so that the figure/ground relationship between the two patterns reverses. In fact, the reader is encouraged to do so while listening to the example.
[5] This pattern forms what Harald Krebs would describe as a displacement dissonance, a type of metrical dissonance in which two or more layers of the same length are nonaligned. The term metrical dissonance is derived from Maury Yeston's discussion of rhythmic consonance and dissonance. Like Yeston, Krebs believes that meter is formed by the interaction of several different layers of motion. Usually at least three layers are present: the pulse layer, which is the fastest regular layer of motion, and two or more slower-moving interpretive layers, which group the pulse layer into larger units. In 3/4 time, for example, there is a pulse layer consisting of eighth-note motion, one interpretive layer of quarter-note motion, and a larger interpretive layer of dotted-half-note motion.
[6] A displacement dissonance occurs when an interpretive layer sounds like it is displaced from a metrical layer; the conflicting layer is called the antimetrical layer. Since electronic sound production facilitates this sort of nonalignment, it is not surprising that it is a frequent source of metrical dissonance in EDM. In Example 1a, a sixteenth-note pulse layer is grouped by two different patterns moving in quarter notes. This excerpt differs from most of Krebs' examples, however, because it is in a certain sense prior to meter; there is no larger layer grouping the quarter notes into measures. This heightens the ambiguity of the example: it is unclear which layer is metrical and which is antimetrical. If we decide to focus on the synthesizer pattern, then we hear the snare drum being displaced by three sixteenth notes, a dissonance that Krebs would describe as D4+3. On the other hand, if we attend to the snare drum pattern, then we hear the synthesizer as displaced by a single sixteenth-note, or D4+1. Both of these possibilities are summarized at the bottom of Example 1a. According to Krebs, the closer a dissonance is to a state of alignment, the greater the intensity of its dissonance. In this example, then, either possibility creates a rather strong dissonance. If the layers were displaced by two sixteenth notes, however, the dissonance would be less intense; furthermore, there would be less opportunity for reinterpretation.
[7] Example 1b, another excerpt from "Piku," begins in the same place as the previous example but continues further into the song. I suggest listening to the example apart from the transcription at first; as before, try to experiment with different figure/ground relationships, and note the nonalignment of the layers.
[8] Near the end of the example, a bass drum with a regular half-note pulse enters (see Example 1b). This new layer seems to solve the problem of nonalignment. The snare drum part of Example 1a drops out, and the new synthesizer pattern seems like a union of the previously nonaligned layers, combining the two-eighths pattern on B and G-sharp with the sixteenth note/dotted-eighth rhythmic pattern previously played by the snare drum (see brackets in Example 1b).
[9] In this example, the entrance of a new layer resolves a metrical dissonance. In other cases, such an entrance may actually create a metrical dissonance. For example, at the beginning of the song "Cups" from Underworld's 1998 album Beaucoup Fish, the synthesizer pattern clearly begins on the downbeat of a 4/4 measure, as shown in Example 2a. This hearing is soon confirmed by a cymbal pattern articulating a quarter-note pulse. After about fifteen seconds of the synthesizer pattern, however, a loud drumbeat comes in with a different pattern, whose entrance is offset from the previously established measure by a single eighth note. If one focuses on this drumbeat, it is possible to hear the beat pattern shift, so that the synthesizer and cymbal patterns now seem to occur on offbeats. As shown in Example 2b, the repetition of these patterns suggests a D8+1 displacement dissonance. At this point, though, the evidence for this hearing remains inconclusive; conservative listeners may not be willing to give up the initial metrical framework just yet. The displacement becomes definitive, however, after the first eight bars of the drumbeat, when a new synthesizer pattern begins to reinforce the downbeat of the drumbeat pattern (Example 2c).
[10] Electronic dance music is not the only type of popular music in which displacement dissonances occur, of course. Other scholars have pointed out related phenomena in repertoires such as rock, jazz, and blues. For instance, Dave Headlam has discussed the use of metrical conflict and "metric shift" in "Rollin' and Tumblin'," a work that began as a blues song and was subsequently recorded by the rock band Cream. Headlam's analysis centers on a motive that appears in several versions of the song. In recordings by blues musicians such as Muddy Waters, the motive is syncopated, emphasizing beats 2 and 4 of each 4/4 bar. This pattern of accentuation is highlighted further in the 1966 Cream version, when a newly added drum pattern (which initially reinforced the prevailing meter) is shifted one beat over, producing a displacement dissonance. The conflict created by this dissonance is eventually resolved, however, during the B section of the song, in which both the motive (now appearing one beat earlier) and the drum pattern align perfectly with the meter.
[2] One of the most distinctive types of contemporary popular music is electronic dance music, a broad category that includes styles such as techno, house, drum-n-bass, and trance. Electronic dance music differs from both rock and art music in a number of ways, all of which suggest avenues for productive theoretical investigation. While many genres of popular music are distinguished from each other on the basis of "surface" differences such as instrumentation or lyrical content, electronic dance music presents a distinctive overall formal structure in addition to its characteristic instrumentation. It also differs from most other types of Western music in its rejection of harmony as a primary musical parameter. Its use of pitch is typically restricted, with the majority of musical development taking place instead in the realms of rhythm, meter, texture, and timbre. Consequently, these areas should be principal concerns for the analyst wishing to pursue a close examination of musical sound in this repertoire
[3] Rhythm provides an ideal starting point, as it seems to be the element to which listeners and fans of EDM relate most directly. This connection is most immediately apparent on the dance floor, where audiences physically enact the rhythms of the music. Written discussions of electronic dance music also tend to highlight its rhythmic qualities--references to its "unrelenting rhythm," "pulsing dance rhythms," and "irresistible tribal rhythm" are common--and fans often refer to the music simply as "beats" (as in, "let's go to the club and hear some beats"). Yet EDM poses a challenge to the analyst, for it differs in many ways from the repertoires that current music-theoretical models of rhythm and meter were developed to address. Transcription can give the impression that it is less complex rhythmically than these other bodies of music: although it typically consists of many different textural layers, each of which has a different rhythmic pattern, these patterns can appear quite simple when considered individually, and they repeat for long periods of time without changing. Nonetheless, the experience of listening to electronic dance music is neither simple nor monotonous, for it engages one's perception of rhythm and meter in a number of interesting ways. In this paper I will examine some of the issues involved in the analysis of rhythm and meter in this repertoire. In the first half of my paper, I will consider metrical dissonance and ambiguity within the context of a layered approach to musical meter. The discussion, which will be centered upon several short musical examples, will also highlight some of the distinctive ways in which these phenomena are manifested in EDM. The second half of my paper will focus on the use of asymmetrical patterns in EDM. Though this section will begin with two musical examples, it will develop into a more general discussion focusing on broader questions of rhythmic and metrical theory. Throughout the paper I will draw upon scholarly work in a number of different fields, including music theory, ethnomusicology, and cognitive science.
[4] Let us first consider a brief musical example, an excerpt from the song "Piku" by The Chemical Brothers. At the beginning of this example, two distinct textural layers, defined by timbre and by rhythmic patterns, are audible; they are not aligned, however (Example 1a). Accents are created by register in the synthesizer pattern and by attack-point spacing in the percussion part, thus suggesting two different streams of quarter-note pulses. This state of nonalignment continues for about thirty seconds. Although the balance between the two parts changes as the example unfolds, neither beat pattern stands out clearly as the dominant one. Thus one can easily shift attention from one pattern to another, so that the figure/ground relationship between the two patterns reverses. In fact, the reader is encouraged to do so while listening to the example.
[5] This pattern forms what Harald Krebs would describe as a displacement dissonance, a type of metrical dissonance in which two or more layers of the same length are nonaligned. The term metrical dissonance is derived from Maury Yeston's discussion of rhythmic consonance and dissonance. Like Yeston, Krebs believes that meter is formed by the interaction of several different layers of motion. Usually at least three layers are present: the pulse layer, which is the fastest regular layer of motion, and two or more slower-moving interpretive layers, which group the pulse layer into larger units. In 3/4 time, for example, there is a pulse layer consisting of eighth-note motion, one interpretive layer of quarter-note motion, and a larger interpretive layer of dotted-half-note motion.
[6] A displacement dissonance occurs when an interpretive layer sounds like it is displaced from a metrical layer; the conflicting layer is called the antimetrical layer. Since electronic sound production facilitates this sort of nonalignment, it is not surprising that it is a frequent source of metrical dissonance in EDM. In Example 1a, a sixteenth-note pulse layer is grouped by two different patterns moving in quarter notes. This excerpt differs from most of Krebs' examples, however, because it is in a certain sense prior to meter; there is no larger layer grouping the quarter notes into measures. This heightens the ambiguity of the example: it is unclear which layer is metrical and which is antimetrical. If we decide to focus on the synthesizer pattern, then we hear the snare drum being displaced by three sixteenth notes, a dissonance that Krebs would describe as D4+3. On the other hand, if we attend to the snare drum pattern, then we hear the synthesizer as displaced by a single sixteenth-note, or D4+1. Both of these possibilities are summarized at the bottom of Example 1a. According to Krebs, the closer a dissonance is to a state of alignment, the greater the intensity of its dissonance. In this example, then, either possibility creates a rather strong dissonance. If the layers were displaced by two sixteenth notes, however, the dissonance would be less intense; furthermore, there would be less opportunity for reinterpretation.
[7] Example 1b, another excerpt from "Piku," begins in the same place as the previous example but continues further into the song. I suggest listening to the example apart from the transcription at first; as before, try to experiment with different figure/ground relationships, and note the nonalignment of the layers.
[8] Near the end of the example, a bass drum with a regular half-note pulse enters (see Example 1b). This new layer seems to solve the problem of nonalignment. The snare drum part of Example 1a drops out, and the new synthesizer pattern seems like a union of the previously nonaligned layers, combining the two-eighths pattern on B and G-sharp with the sixteenth note/dotted-eighth rhythmic pattern previously played by the snare drum (see brackets in Example 1b).
[9] In this example, the entrance of a new layer resolves a metrical dissonance. In other cases, such an entrance may actually create a metrical dissonance. For example, at the beginning of the song "Cups" from Underworld's 1998 album Beaucoup Fish, the synthesizer pattern clearly begins on the downbeat of a 4/4 measure, as shown in Example 2a. This hearing is soon confirmed by a cymbal pattern articulating a quarter-note pulse. After about fifteen seconds of the synthesizer pattern, however, a loud drumbeat comes in with a different pattern, whose entrance is offset from the previously established measure by a single eighth note. If one focuses on this drumbeat, it is possible to hear the beat pattern shift, so that the synthesizer and cymbal patterns now seem to occur on offbeats. As shown in Example 2b, the repetition of these patterns suggests a D8+1 displacement dissonance. At this point, though, the evidence for this hearing remains inconclusive; conservative listeners may not be willing to give up the initial metrical framework just yet. The displacement becomes definitive, however, after the first eight bars of the drumbeat, when a new synthesizer pattern begins to reinforce the downbeat of the drumbeat pattern (Example 2c).
[10] Electronic dance music is not the only type of popular music in which displacement dissonances occur, of course. Other scholars have pointed out related phenomena in repertoires such as rock, jazz, and blues. For instance, Dave Headlam has discussed the use of metrical conflict and "metric shift" in "Rollin' and Tumblin'," a work that began as a blues song and was subsequently recorded by the rock band Cream. Headlam's analysis centers on a motive that appears in several versions of the song. In recordings by blues musicians such as Muddy Waters, the motive is syncopated, emphasizing beats 2 and 4 of each 4/4 bar. This pattern of accentuation is highlighted further in the 1966 Cream version, when a newly added drum pattern (which initially reinforced the prevailing meter) is shifted one beat over, producing a displacement dissonance. The conflict created by this dissonance is eventually resolved, however, during the B section of the song, in which both the motive (now appearing one beat earlier) and the drum pattern align perfectly with the meter.
No comments:
Post a Comment